2024-07-29
ByteCheckpoint: A Unified Checkpointing System for LLM Development
ABSTRACT
Checkpointing to preserve training states is crucial during the development of Large Foundation Models (LFMs), for training resumption upon various failures or changes in GPU resources and parallelism configurations. In addition, saved checkpoints are dispatched to evaluation tasks or transferred across different training stages (e.g., from pre-training to post-training). All these scenarios require resharding distributed checkpoints from one parallelism to another. In production, different LFMs are trained with various frameworks and storage backends, depending on model sizes and training scales. A high-performance checkpointing system is needed to enable efficient checkpoint management at scale. This paper presents ByteCheckpoint, an industrial-grade checkpointing system for large-scale LFM training. ByteCheckpoint employs a parallelism-agnostic checkpoint representation that enables efficient load-time checkpoint resharding. ByteCheckpoint advocates a generic checkpoint saving/loading workflow to accommodate multiple training frameworks and support different storage backends. To ensure high I/O efficiency, we take a full-stack approach to optimize saving/loading plan generation, critical stages of checkpointing pipelines, and irregular tensor processing required by resharding. To guarantee the scalability of ByteCheckpoint in large-scale training, we enhance the storage system to efficiently handle high volumes of checkpointing I/O requests, devise communication optimizations within the checkpointing workflow, and introduce a suite of monitoring tools to analyze performance and detect bottlenecks. Compared to existing open-source checkpointing systems , ByteCheckpoint significantly reduces runtime checkpoint stalls, achieving an average reduction of 54.20x. For saving and loading times, ByteCheckpoint achieves improvements of up to 9.96x and 8.80x, respectively.
AUTHORS
Borui Wan, Mingji Han, Yiyao Sheng, Zhichao Lai, Mofan Zhang, Junda Zhang, Yanghua Peng, Haibin Lin, Xin Liu, Chuan Wu
Featured Publications
View AllSeedEdit: Align Image Re-Generation to Image Editing
Yichun Shi, Peng Wang, Weilin Huang
2024-11-11
Seedream 2.0: A Native Chinese-English Bilingual Image Generation Foundation Model
Lixue Gong, Xiaoxia Hou, Fanshi Li, Liang Li, Xiaochen Lian, Fei Liu, Liyang Liu, Wei Liu, Wei Lu, Yichun Shi, Shiqi Sun, Yu Tian, Zhi Tian, Peng Wang, Xun Wang, Ye Wang, Guofeng Wu, Jie Wu, Xin Xia, Xuefeng Xiao, Linjie Yang, Zhonghua Zhai, Xinyu Zhang, Qi Zhang, Yuwei Zhang, Shijia Zhao, Jianchao Yang, Weilin Huang
2025-03-10
SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines
M-A-P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shian Jia, Sichao Jiang, Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, Dehua Ma, Yuansheng Ni, Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tianshun Xing, Ming Xu, Zhenzhu Yang, Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang, Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili Wang, Chenqing Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan, Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu, Qian Liu, Tianyu Liu, Shiwen Ni, Junran
2025-02-27