2024-10-03

LLaVA-Critic: Learning to Evaluate Multimodal Models

ABSTRACT

We introduce LLaVA-Critic, the first open-source large multimodal model (LMM) designed as a generalist evaluator to assess performance across a wide range of multimodal tasks. LLaVA-Critic is trained using a high-quality critic instruction-following dataset that incorporates diverse evaluation criteria and scenarios. Our experiments demonstrate the model's effectiveness in two key areas: (1) LMM-as-a-Judge, where LLaVA-Critic provides reliable evaluation scores, performing on par with or surpassing GPT models on multiple evaluation benchmarks; and (2) Preference Learning, where it generates reward signals for preference learning, enhancing model alignment capabilities. This work underscores the potential of open-source LMMs in self-critique and evaluation, setting the stage for future research into scalable, superhuman alignment feedback mechanisms for LMMs.

AUTHORS

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, Chunyuan Li

Featured Publications

View All
Computer Vision

SeedEdit: Align Image Re-Generation to Image Editing

Yichun Shi, Peng Wang, Weilin Huang

2024-11-11

System Research

ByteCheckpoint: A Unified Checkpointing System for LLM Development

Borui Wan, Mingji Han, Yiyao Sheng, Zhichao Lai, Mofan Zhang, Junda Zhang, Yanghua Peng, Haibin Lin, Xin Liu, Chuan Wu

2024-07-29

Speech&Audio

SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words

Junyi Ao, Yuancheng Wang, Xiaohai Tian, Dekun Chen, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou Li, Zhizheng Wu

2024-06-19