2024-11-05

Classification Done Right for Vision-Language Pre-Training

ABSTRACT

We introduce SuperClass, a super simple classification method for vision-language pre-training on image-text data. Unlike its contrastive counterpart CLIP who contrast with a text encoder, SuperClass directly utilizes tokenized raw text as supervised classification labels, without the need for additional text filtering or selection. Due to the absence of the text encoding as contrastive target, SuperClass does not require a text encoder and does not need to maintain a large batch size as CLIP does. SuperClass demonstrated superior performance on various downstream tasks, including classic computer vision benchmarks and vision language downstream tasks. We further explored the scaling behavior of SuperClass on model size, training length, or data size, and reported encouraging results and comparisons to CLIP. https://github.com/x-cls/superclass

AUTHORS

Zilong Huang, Qinghao Ye, Bingyi Kang, Jiashi Feng, Haoqi Fan

精选研究

查看更多
Computer Vision

SeedEdit: Align Image Re-Generation to Image Editing

Yichun Shi, Peng Wang, Weilin Huang

2024-11-11

System Research

ByteCheckpoint: A Unified Checkpointing System for LLM Development

Borui Wan, Mingji Han, Yiyao Sheng, Zhichao Lai, Mofan Zhang, Junda Zhang, Yanghua Peng, Haibin Lin, Xin Liu, Chuan Wu

2024-07-29

Speech&Audio

SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words

Junyi Ao, Yuancheng Wang, Xiaohai Tian, Dekun Chen, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou Li, Zhizheng Wu

2024-06-19