2024-04-09
Magic-Boost: Boost 3D Generation with Mutli-View Conditioned Diffusion
ABSTRACT
Benefiting from the rapid development of 2D diffusion models, 3D content creation has made significant progress recently. One promising solution involves the fine-tuning of pre-trained 2D diffusion models to harness their capacity for producing multi-view images, which are then lifted into accurate 3D models via methods like fast-NeRFs or large reconstruction models. However, as inconsistency still exists and limited generated resolution, the generation results of such methods still lack intricate textures and complex geometries. To solve this problem, we propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results through a brief period of SDS optimization (∼15min). Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency from pseudo synthesized multi-view images. It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results. Extensive experiments show Magic-Boost greatly enhances the coarse inputs and generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)
AUTHORS
Fan Yang, Jianfeng Zhang, Yichun Shi, Bowen Chen, Chenxu Zhang, Huichao Zhang, Xiaofeng Yang, Jiashi Feng, Guosheng Lin
精选研究
查看更多SeedEdit: Align Image Re-Generation to Image Editing
Yichun Shi, Peng Wang, Weilin Huang
2024-11-11
ByteCheckpoint: A Unified Checkpointing System for LLM Development
Borui Wan, Mingji Han, Yiyao Sheng, Zhichao Lai, Mofan Zhang, Junda Zhang, Yanghua Peng, Haibin Lin, Xin Liu, Chuan Wu
2024-07-29
SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words
Junyi Ao, Yuancheng Wang, Xiaohai Tian, Dekun Chen, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou Li, Zhizheng Wu
2024-06-19